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Useful Equations for Calculating the Induced Voltage
Inside a Faraday Cage that has been Struck by Lightning

Roy E. Jorgenson and Larry K. Warne
Electromagnetics and Plasma Physics Analysis Dept.
Sandia National Laboratories
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Albuquerque, NM 87185-1152

Abstract

One of the tasks performed routinely by the Electromagnetics and Plasma Physics Analysis Department
at Sandia National Laboratories is analyzing the effects of direct-strike lightning on Faraday cages that
protect sensitive items. The Faraday cages analyzed thus far have many features in common. This report
is an attempt to collect equations and other information that have been routinely used in the past in order
to facilitate future analysis.
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Useful Equations for Calculating the Induced Voltage
Inside a Faraday Cage that has been Struck by Lightning

1 Introduction

This report contains a collection of equations and other information used to analyze the protection
provided by a Faraday cage against the effects of worst-case, direct-strike lightning. There are three
characteristics of the lightning waveform that are of importance in the analysis: the peak current, the
maximurn rate of current rise and the continuing current. Worst-case lightning (one percentile) has a peak
current (I) of 200 kA, a maximum rate of current rise (81/8t) of 400 kA/us and a continuing current of
800 A that lasts for 0.5 seconds [1].

The Faraday cages that we have analyzed do not consist of a continuous metallic shell surrounding
sensitive contents. Rather, they consist of separate, individual metal pieces that are attached to one
another in some manner to enclose the contents. One example of a Faraday cage is shown in Figure 1.
The sensitive contents are placed on a metal platform and a metal cover is placed over them. The cover is
attached to the platform by bolts that pass through a flange welded to the cover’s bottom. In the Faraday
cage example shown in Figure 2, the contents are placed inside an open metal can, which is then covered
by a metal lid. In the third example, shown in Figure 3, for ease of handling, the metal cover from the first
example is made of two halves that are attached to each other in some manner. Instead of using bolts
to hold the cover to the platform, metal pieces that rotate over the flange are used. The Faraday cages
that we have observed usually have a mechanism that indicates if the cage has content, or if it is empty.
This mechanism could be as simple as the viewing port, shown in Figure 1, or could be more complex, like
the plunger shown in Figure 2. (The contents push the plunger so that it protrudes from the top of the
Faraday cage, indicating that something is inside.)

When designing a Faraday cage to protect sensitive contents, the presence of any metallic penetration
that is surrounded by insulation as it passes through the wall of the Faraday cage, is strongly discouraged
for the following reason. Lightning could attach to the metallic penetration and drive a high current
through the Faraday cage onto the contents until the voltage on the penetration becomes so high that
breakdown occurs across the surrounding insulation to the cage. The high current and subsequent high
voltage on sensitive contents is a situation that must be avoided. Therefore, as an example, we must ensure
that the plunger shown in Figure 2 is an insulator and not made of metal. Once metallic penetrations have
been eliminated from the design, the possibility of lightning penetrating the Faraday cage directly is not of
concern. Voltages due to lightning can still be induced inside the Faraday cage, however, if conductor loops
inside link magnetic flux, which penetrates the cage through its various joints and apertures. The derivative
of linked magnetic flux with respect to time causes a voltage to develop between various conductors within
the cage. In the following sections we will find expressions for this voltage due to different types of
apertures. Determining the inside voltage is a necessary step in determining if the contents are protected
sufficiently by the Faraday cage.

2 Long Slots

2.1 PEC Walls

One type of aperture commonly found in a Faraday cage, particularly where the various metal pieces

10
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that make up the cage attach to one another, is a long slot, an example of which is the bolted joint shown
in Figure 4. The physical characteristics of the slot are its length (2h), which in a bolted joint is the
bolt-to-bolt spacing, its depth (d), and its width (w), which is usually caused by imperfections in mating
between the two surfaces of the joint. For the following analysis to hold, the length of the slot must be large
compared to its depth and (for the finitely-conducting wall and conducting gasket cases) the width must be
small compared to its depth. Initially, we assume that the walls of the slot are perfect conductors, that
there is no gasket material in the slot and that the bolts at the end of the slot have a negligible inductance
(so the voltage across them is zero — they can be modeled as short-circuits). As a worst-case we assume
that lightning current attaches to one side of the slot, centered between the two terminating bolts and the
return is on the opposite side of the slot. Also as a worst-case, we do not allow breakdown to occur across
the slot, which would clamp the maximum voltage available to be the voltage at which the breakdown
occurs.

First let us look at Figures 5 and 6 to understand what is happening physically. As the current divides
and flows along the top of the slot, through the bolts and back along the bottom of the slot, it generates
a magnetic field in accordance with a right-hand rule as shown in Figure 5. Note that in the figure the
magnetic field flows into the right half of the slot and out the left half. Figure 6 shows a top view of the
slot and magnetic field. If we think of the slot itself as a conducting loop, as we increase the area of the
loop by moving our observation point from the right-hand wall toward the slot center, we will increase the
amount of magnetic flux that we intercept and, therefore, increase the voltage seen across the slot. This
trend continues until we reach the center of the slot; then, as we continue increasing the area of the loop,
moving past the center toward the left-hand wall, we begin to intercept magnetic flux flowing out of the
slot, decreasing the net flux flowing across the loop surface. This causes the voltage seen across the slot
to decrease until it reaches zero at the left-hand wall (the net flux flowing across the entire slot is zero).
Thus, the voltage at the center of the slot is the maximum voltage seen along the length of the slot. It is
also the maximum voltage seen inside the Faraday cage due to flux entering this particular slot. Since the
loop formed by half the slot intercepts all of the flux flowing through it, a single-turn conducting loop, like
the one shown in Figure 6, can generate the same maximum voltage as the slot (if it intercepts all of the
flux), but will never exceed it. Thus, we can use the maximum slot voltage as an upper voltage bound of
the Faraday cage.

The slot can be modeled in terms of an inductance per unit length, which is the parallel combination
of the gap inductance per unit length Lga, and the external inductance per unit length Lege, [3, 4]. These
quantities are expressed in terms of the physical slot parameters as

w

Lgap = MOE (1)
Ve
Leztr - ’uOQ_O (2)
where 8h .
QO=2]11<—> +2<1n2——>
w 3

is the antenna fatness parameter, and u, is the permeability of free space (47 x 10~7 H/m). The total
inductance per unit length is LI
_ gapextr

Ltot - Lgap -+ Leztr (3)
which leads to the simplified transmission line model of the slot shown in Figure 7 (A represents a
small distance along the transmission line). The standard transmission line model could be simplified
by neglecting the distributed capacitance and using a lumped circuit approximation since the lightning
waveform has such low frequency content (see Appendix A for more details). An observer at the center of
the slot would see two inductances L;.:h in parallel, or a total slot inductance of

1
leot = “2’Ltoth (4)
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If lightning attaches to the center point of the slot, the peak voltage at the center of the slot can be related

to the lightning current by
oI
Vpec = leota (5)

As an example, and one that we will build on throughout this section, we will find the maximum
voltage inside the Faraday cage due to a slot having a width of w = 1.0 mm, a depth of d = 25.0 mm and
a bolt spacing of 2k = 500.0 mm (these are typical dimensions in the Faraday cages encountered thus
far). With these slot parameters, Ly, = 50.3 nH/m, o = 11.9 and L.y, = 331 nH/m. The parallel
combination of Lgep and Leztr gives a total inductance per unit length of Lip: = 43.6 nH/m, a total slot
inductance of Lot = 5.45 nH and a maximum voltage of Ve = 2.2 kV.

2.2 Finite Conducting Walls

Next, we will relax the assumption that the walls of the slot are perfect electric conductors. Therefore,
the current flowing on the walls of the slot is no longer constrained to remain on the surface, but can
penetrate some depth into the wall. This allows more magnetic field to penetrate the slot and increases
Vpec calculated above by an additional term Vi,:. Let us again assume that worst-case lightning current
attaches to the center of a slot whose walls now have a finite conductivity. Assume that the current rises
linearly in time (¢) from 0 kA at ¢t = 0 to 200 kA at t = 7,.. If the slot is symmetrical about the current
source, as is the case here, the incident current will divide evenly between the two legs of the slot with half
flowing in the slot to the right of the current source (I = 100 kA) and half flowing in the slot to the left of
the current source (I = 100 kA). The magnetic field on the walls as a function of time is

t
Ho(t) = hgrr
where h{ = I /d (recall that d is the slot depth).

If a wall of the slot is made of magnetic material, such as carbon steel, the voltage evaluated at the
time ¢t = 7, due to the magnetic material characteristics of the wall is [5]
Vi = hB, 2 (1 - ?) + hyohgy? (1 -0 ) 6)

T T T 2T'P

n _ [ 1/ (r0)
Tr Bs + %,Urohg-
o_. 1 (=)
T T6'u0 Ty

™ accounts for two facts related to the permeability of the wall material, namely that it has a high
permeability at low values of Hy and the permeability of free space at high values of Hy, after the material
has saturated. B; is the value of magnetic flux density where saturation occurs and is approximately 2.0
Tesla for most materials of interest. ¢ is the conductivity of the walls. The risetime of the current pulse
(1) is taken to be 0.5 x 10~ seconds in order to remain consistent with the stated worst-case lightning
rise rate of 400 kA/us. Again, h is the half-length of the slot. If both walls of the slot are made of this

material, Vi = 2V,

where

and

If a wall of the slot is made of a nonmagnetic material, such as aluminum or stainless steel, the voltage
evaluated at the time ¢ = 7, due to the nonmagnetic material characteristics of the wall is [5]

1
"= hhdy |2 (7)

int
s TTrC
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Again if both walls are made of this material, V¢ = 2V, If one of the walls is made of magnetic material

int
and the other of nonmagnetic material, Vin: = V5, + V7.

Although the voltage waveforms associated with Vi, and Vye. do not crest precisely at the same time, a
bound on the total voltage in the center of the slot (Vinax) may be taken as the sum of V;,,; and V... Let us
continue with our example from the previous section (kg = 100 kA /0.025 m = 4.0 x 10% A/m) and assume
that one wall of the slot is made of aluminum (6061), which has a conductivity of 2.6 x 107 (2 — m)_1 and

the other is made of carbon steel, which has a conductivity of 4 x 10% (@ — m)™". For the carbon steel wall

2 (4.0 x 106/ (0.5 x 10~ x 4.0 x 106)
s U =738
Tr \/ 2.0 + 314.0 x 108 m/s
and 1
? = 0.5 % 107% x 2ug x 4.0 x 10°(738)° = 0.228
Therefore, i

™o = 0.25x 2.0 x 738 (0.772) + 0.25 x g x 4.0 x 10% x 738 x (0.886)
= 2854821 =1.1kV

For the aluminum wall

4
ynm 6 Ho — A V4
int =025 x 4.0 x 10 \/7r x 0.5 x 106 x 2.6 x 107 035k
The voltage bound is then Vipax < Viee + Vi + V27 = 3.65 kV.

int

2.3 Conductive Gasket

Next we will look at the effect of including a conductive gasket in the slot. Let us assume that the
gasket fills the entire region between the two slot walls so that it will have a length of 2A, a width of w and
a depth of d, the conductivity of the gasket is assumed to be o,. The total conductance per unit length
then is

G=o04,— 8
- ®)
The transmission line model of the gasketed slot is shown in Figure 8. Note that the gasket causes

current to be shunted across the slot as it travels toward the bolts. In the analysis of Section 2.1, the

current was constant along the length of the transmission line, which allowed us to reduce the transmission
line to a simple inductive circuit, but this is no longer the case.

Let us first calculate the propagation constant < of this transmission line.

¥ = VIwLgepG

where j = /=1 and w is the angular frequency (the time convention is assumed to be e*“t). We ignore
Lezt- in this section to make the definition of v consistent with the transverse electromagnetic (TEM)
propagation constant. The presence of a gasket usually physically increases the width of the slot, which
tends to increase the slot voltage. This eflect is offset by the fact that a conductive gasket changes the
current distribution along the length of the transmission line. Continuing with our example from above
(d = 25 mm), but allowing w to increase to 3.0 mm to accommodate the width of the assumed gasket and
using a typical value of o, = 103 (2—m)~? for gasket conductivity, we obtain G = 8.33 x 10 (Q—m)~1.
Because of the assumed increase in w, Lggp increases to 151 nH/m. The induced voltages that we are

19
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calculating arise from a rapidly changing magnetic flux. This, in turn, implies that the highest frequencies
of the lightning spectrum, which are due to the risetime of the lightning waveform will contribute most to
the voltage. A reasonable high-frequency limit is when w = 1/7, = 2 x 108 radians/second [2]. At this
frequency v = \/jwLgapG = 1/52.52 x 10% = (35.5 + j35.5) m™!, which means that the magnitude of the
current falls exponentially (e~7%) as we travel from the source towards the bolt.

Since « is large for a reasonably conducting gasket, the current will have fallen to nearly zero for a
typical slot before it reaches the bolt (e~2 for our example), so there will be negligible reflection from
the short circuit formed by the bolt. At high frequencies, therefore, the transmission line appears to the
current source as though it is infinitely long and the maximum voltage is

Vi = %’1 ©)

where Zj is the characteristic impedance of the transmission line:
JjwLlgap
Zy = ——=
° G
In our example, Zg = (4.26 x 1073 + j4.26 x 1073) Q 50 Vinax = 426 (1 + j) kV - a significant change from
what Vpe would be.

If the gasket becomes more conductive, we may account for exponential decay in the depth direction
that reduces the voltage even more as shown in equation B-1.

! ! —iZmo (10)

\/kng _ n2r2 "~ (=jnm) P

Viewe = Lorwp, | +2§:(—1)"
max — 2 )u’g kgd —~
where

kg = —Jwh, (og + jweg)
and p, and g, are respectively, the permeability and permittivity of the gasket material.
9 9 g

One note of caution: a conductive gasket can be rendered less effective if there is a nonconductive
coating, such as anodization, on the metal where the gasket is attached. Nonconductive coatings must be
scraped off before the gasket is applied.

2.4 Inductive Slot Terminations

Thus far in our analysis we have ignored the slot terminations and have modeled them as short circuits.
We will now examine the validity of this approximation for various types of terminations. We will confine
our discussion to slots without conducting gaskets because, as noted above, if a proper conducting gasket is
used, the current waveform attenuates before it reaches the terminations, rendering them unimportant. We
will also assume, as an upper bound, that all of the current flows on the walls of the slot under consideration
and through its terminations and that none of the current flows on the walls of adjacent slots.

A bolt termination has the same configuration as a section of coaxial transmission line as seen in Figure
9. The inductance of the coaxial section is
Af Ho Tout
= In 2% 11
| Lyoit o e (11)
where 7in, Tout and Ay are defined in Figure 9, and pq is the permeability of free space. Typical dimensions
are Tip = 5 M, 7oyt = 5.5 mm and Ay = 15 mm, yielding Lo = 0.29 nH. This inductance replaces the
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short circuit at the ends of the slots in Figure 7. Equation 4 now becomes

1
Lot = §(Ltoth + Lbolt) (12)

and we see that ignoring the bolt inductance in our example underestimates the voltage across the slot by
approximately 3%. :

Another type of device used to hold the cover onto the platform is the one shown in Figure 3 and
shown in cross-section in Figure 10. It consists of a metal piece that rotates over the flange once the cover
is in place. It is often used in place of bolts because there is no need to align the flange bolt holes with the
tapped holes in the platform and therefore, the Faraday cage is simpler to assemble. The inductance of
such a termination is AA

Lpg = po gdw (13)
Where Ay, A, and Ay are defined in Figure 10 (A, is the thickness of the hold-down piece measured into
the plane of the drawing). Typical dimensions of such hold-down pieces are Ay = 15 mm, A,, = 10 mm,
and A4 = 30 mm, yielding Lpg = 6.3 nH, which may be a significant contributor to the slot inductance. We

can add the effect of finite conductivity of the hold-down device by using equation 6 or 7 and substituting
Ag for d and Ay for h. The voltage due to Lyq is expected to dominate in this case, however.

The last type of slot-terminating device that we will examine, is exemplified by the clamps shown in
Figure 3, which are used to hold two halves of a cover together. A clamp consists of a wire bail attached
to a lever arm, which is, in turn, attached to one half-cover. The wire bail passes over a hook attached to
the other half-cover. Action of the lever arm draws the two halves together in a manner very much like a
ski boot buckle. A detail of the clamp is shown in Figure 11.
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Figure 12 shows an end view of the two wires that form the bail. The wires have a radius of r,,, are
separated from each other by 2s and are a distance A,, above the metal cover. Approximating the wires as
being infinite in z and neglecting the curvature of the metal cover we find an expression for the 2 directed
magnetic vector potential at any observation point in the 2z = 0 plane:

A..4=-“2L::0 [ln\/(r+s)2( P +1ny/(z— ) + (5 — o)’ (14)

—ln\/(x+s )+ (y+ hy) ln\/(a:—s P+ (y + hw)®

The inductance per unit length of the clamp can be calculated by the formula

L-——]{A dl

where the factor of 1/2 accounts for the two wires in parallel, and where Tis the rectangular contour shown
in Figure 12 that travels along the wire surface for one meter in the 2 direction; to the surface of the metal
cover in the —¢ direction; along the metal surface for one meter in the —# direction; and finally back to the
wire surface in the § direction. This contour was chosen over a contour between the two wires because,
since the two wires forming the bail are connected to each other at their ends, the net flux linking them wilt
be zero. All contributions to the integral over the chosen contour are zero, (either because A, itself is zero
at y = 0, or because the dot product is zero) except for the contribution along the wire surface. Evaluating
A, at the wire surface (where z = s and y = h,, — r,), making the approximation that r,, < s, h,, and
multiplying by the length of the wire () we obtain

!
Lclamp = _Z_O In 2 +1In (2h > (15)
4 (25)% + (2hy)?

Typical parameters for clamps of this style are r,, = 1.5 mm, s = 15 mm, h,, = 15 mm and ! = 40 mm
so that Logmp = 13.4 nH. In this case the inductance of the terminating clamp is actually larger than
Ltoth-

2.5 Varying the Slot Cross Section
This subsection indicates how to proceed if the width of the slot varies as a function of depth, which

might occur in order to accommodate a gasket, for example. Figure 13 shows the side view of a slot having
three different widths. Two different gaskets are employed in the slot.

The analysis proceeds exactly as before except that L., consists of three parallel inductances so that
1 1 1 1

= + + 16
Lgap Lgapl Lgap? Lgap3 ( )
where w
Lgap1 = ,“od_l
w3
Lgaps = ;“od—3

as previously defined, but Lg.p2 needs correction terms to account for the vertical surfaces in the gap 2
region. The correction terms take the form of inductances in parallel to the original gap inductance so the
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correction lowers the original inductance value.
1 do 1 1

Lgap2 B HoW2 Lv2l Lv23
Assuming that there is negligible interaction between the vertical surfaces on the left side and the vertical
surfaces on the right side,

1 2 2
- L E(Hﬂ) m(uﬂ)ﬂ(l_ﬂ) ln(l_ﬂ)_mn(&)
Lyo1 2mpg | w wo . wWo wy wo wey wo

1 ew
~ —1In (-——2> when wy >> w,
Tio 4 un

where e = 2.71828. Similarly,

2 2
L _ L |=» <1+2§) m(lﬂ) _%(l_%) m(l_%) _zln(&)
L,o3 2mpg | ws wWo wo w3 wo wo wWo
1
—1In (EE) when wy >> w3
g 4 ws

A

The gasket conductance becomes

G=Gy+G3 (17)
where p
G3 = 0’93—3
w

3
as previously defined, but like Lgqp2, G2 also needs a correction to account for the vertical surfaces in
the gap 2 region. The correction takes the form of a conductance in parallel so it increases the original
conductance value.

da
Gy = Tgo— + Gyo1 + Gyos
we

2 2
Gz = ZQZ[.“E (1+ﬂ) m(1+l—“l)—ﬂ(1—-“-’l> ln(l—ﬂ>—2ln(4ﬂ)}
27 | un wa wWa w1 wo wWo wa

~ 221, (Eﬂ> when ws >> wy
T 4wy
o w ws\ 2 w w ws \ 2 w w
Gozs = -2 [—2 (1+—3> 1n<1+—3> -2 (1—-—3) ln<1——3) —2111(4—3)]
27 | w3 wo wa w3 wo wa wa
~ 225 <E%> when we >> w3
T 4 w3

3 Circular Viewing Apertures

3.1 Uniform Magnetic Field Coupling

A second type of aperture commonly found in Faraday cages is the circular aperture. These apertures
are typically used to view the contents of the Faraday cage as seen in Figure 1. Let us ignore the effect
of the cover or content geometry on the H field and simplify the problem to that of a circular aperture in
an infinite ground plane as shown in Figure 14. In this section we will conduct several levels of bounding
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Figure 14. Circular Aperture Driven by H Field

analysis. First, we find the voltage on a conducting loop positioned at the aperture, which intercepts
all of the flux entering the Faraday cage through the aperture. The advantage of this analysis is that
we need knowledge of only one parameter: the aperture radius. As we consider apertures with larger
radii, the above bounding voltage becomes too high to be useful. Therefore, we take into account the
distance between the aperture and the actual location of a conducting loop, but we still require that the
loop intercepts all of the flux passing through a surface surrounding the aperture at this given distance.
This analysis requires knowledge of two parameters: aperture radius and distance. The distance and
radius may be such that this bound is also too high to be useful, so finally, we calculate the voltage on a
conducting loop accounting for both the distance between the conducting loop and the aperture and the
area of the loop.

Before we begin the analysis, let us examine what is happeni)ng physically. Figure 15 shows the top
view of a circular aperture illuminated by a y-directed, uniformm H field. Because the electric current flows

around the aperture symmetrically, y = 0 is a plane of symmetry for the ﬁ field. The ﬁ field enters the
Faraday cage through the bottom half of the aperture {(y < 0) and leaves through the top half (y > 0).

‘We begin the analysis by solving for the magnetic scalar potential ¢,, when a uniform H field (Hp)
exists on one side of a circular aperture. ¢, is related to the H field by the equation.

H=-Y¢, (18)
and satisfies Laplace’s equation (V2¢,, = 0).

In order to model a circular aperture having the radius of a, we use the oblate spheroidal coordinate
system (£, ¢, ) shown in Figure 16, where (0 < § < 1), (—00 < { < o), and (—7 < ¢ < 7) [6]. These
choices for the ranges of coordinates are appropriate for the aperture problem because the coordinates are
continuous throughout the region where the field exists. The oblate spheroidal coordinates are related to
the Cartesian coordinates by the following equations:

z = ay/1+¢%/1-€%cosg (19)
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y = ay/l+§2\/1—§2sincp
: = gt

The solution of Laplace’s equation in this coordinate system takes the form of

bm =D > (AP + B'Q(E)) (AP (5¢) + BQR(5¢)) (Csin(mep) + D cos(mep)) (20)

Where P and QT are the associated Legendre functions of the first and second kind respectively, and j is

V-1

In the upper half-plane, far away from the aperture, H = §Hy. Therefore, using equation 18, we find
by inspection that
¢m(< = +OO) = —Hoy
where y is the Cartesian coordinate. Converting to oblate spheroidal coordinates using equation 19, we
obtain
$m(¢ = +00) = —Hoa(1 — €31 + ()] ¥ sing
In the lower half-plane, far away from the aperture, H =0. Therefore,

First we note, that because of symmetry exhibited by the circular aperture, and in order to match
the incident field in the upper half-plane, only the m = 1 and n = 1 modes have non-zero coefficients in
equation 20. Further, the coefficient of cos(mep) must be zero. The potential must be finite at { = 1,
which means that the coefficient B’ must be zero. We are left with

$m = PL(€) (AP} (jC) + BQ1(j¢)) siny
Substituting the actual expressions for the associated Legendre functions, we obtain
O = (1~ gz)% [jA(l + 42)‘5 +B(1+ 42)% <axccot< 1 —542)] sinp

Letting ¢ — +o00, we find that jA = —Hpa. Letting { — —oo, and using the proper branch cut so that
arccot(—(¢) = 7 — arccot(+¢) we find that B = —jA/n. Therefore,

1 1 H 1 .
Om={(1- 52)2 [—Hoa(l + §2)2 + —7‘:9-(1 + 42)2 (a_rccotC 1 —f§2>] sin

In order to use the formulas found in [7] for gradient, we make the substitutions { = sinhn, where
(—oo < 1 < ), and £ = cos§, where (0 < 8 < 7/2), to obtain

1 sinhn] (21)

1
= —Hyasinf coshnsing |1 — = arccot(sinh ) + —
P, 0 nsinp [ p (sinhn) + — P

To find the maximum voltage that could appear on a conducting loop within the container, we postulate

that a conducting loop positioned at the aperture intercepts all of the ﬁ field flowing through half the
aperture. Using equation 18 to find the # directed H field gives

1 o¢
H,(n,0,¢) = - Zom 22
(m.8.) afcosh®n —sin®8)z 97 (22)

Hpasinfsing

1 1 1
— |sinh 7 — = sinh n arccot(sinh ) + — + ————
a(cosh? n —sin? §)2 - K (sinh ) T wcoshln
Letting n — 0, we find that H,, in the aperture is
2Hgsinfsin ¢

H,(0.6,0) = 7 cosd
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In cylindrical coordinates, p = acoshnsinf. In the aperture, therefore, where = 0, p = asiné.
Substituting, in order to convert H,, to cylindrical coordinates we obtain
2Hy p

H.(p,#,0) = 77_—;; sing

Next we find the magnetic flux (®) flowing into the Faraday cage through the aperture by integrating
B, = pyH, over the bottom half of the aperture.

a p0O
® = (-Z-2)p /0 H.pdpdp

= pgHod?
The maximum voltage is
8%
maz = /gy 24
v, 5 (24)
_ 9Ho a?
- a t lu‘O

Equation 24 can be used if lightning attaches to the cart more than an aperture diameter away from the

3
aperture. The H field due to the lightning current can be averaged over the aperture area to determine
Hy,

3.2 Lightning Attaches to Aperture Edge

The worst-case scenario involving lightning alone is if the lightning arc attaches to the edge of the
circular aperture, as shown in Figure 17. Later, we will discuss a case even worse than this one, but which
requires that a wire be present to conduct lightning current across the aperture. If the aperture is filled
with a dielectric plunger so that a wire cannot fall across the aperture, or if there is some other reason that
the wire scenario cannot occur, then this is the appropriate worst-case for the circular aperture.

Physically, the current and magnetic field behaves as shown in Figure 18. We assume the direction of
current flow to be from the attachment point toward the lightning source along the arc channel. Therefore,
current flows on the ground plane around the aperture and toward the attachment point. The H field
enters the Faraday cage through the bottom half of the aperture (y < 0) and leaves through the top half
(y > 0). For this case, the H field cannot be averaged across the aperture, since in the vicinity of a current
source I, the field behaves as

g-p L
BRETT
(we have temporarily assumed that the origin is at the arc position on the edge of the circular aperture) !.
In Appendix C, however, we show that by resgicting the analysis to include only the m = 1 mode, we can
use uniform field results if we replace Hq by H due to the lightning current evaluated at the center of the
aperture, namely,

I
Hy — —
. : : . . 2ma
Making this replacement in equation 24 we obtain
_ Ko dl
Vinax = 2w Ot

If we include all of the modes, using equation C-4, we obtain

1 In previous memorandums we averaged H,, over the aperture diameter. Averaging requires knowledge of the arc radius, it
over-estimates Vimax and it cannot be rigorously justified. We therefore, changed the analysis to the methods outlined in
Appendices C and D.
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Vinax = “—7‘;3(0.6478)%t£ (25)
Therefore, in the aperture, including only the m = 1 mode underestimates the voltage by 23%. As we move
away from the aperture, this error becomes smaller. Because the uniform field excitation with the above
substitution yields good results and is probably more familiar to the reader we will continue to develop the
uniform field results in the main body of this report to demonstrate the procedure, but will use equations
from Appendix C as appropriate. As an example calculation, if we assume an aperture having a radius of
a = 5 cm, then substituting in equation 25, Vipax = 0.6478 x 8.0 kV = 5.2 kV when worst-case lightning
strikes the edge of the aperture.

If the conducting loops inside the cage were physically constrained so they were guaranteed to be some
distance from the aperture, we could take this distance into account when calculating Vipax. Assume that
the conducting loops are constrained so they cannot break the surface 7 = 7y where 75 < 0. The H field
enters the aperture and crosses the n = 7, surface as shown in Figure 19. Revisiting equation 23 when
71 = 1)g We obtain

1 1)
Hy(70,0,9) Om

B a(cosh® ng — sin® §)z 91

Hysinsin I: . 1. . 1 1 ]
= sinh gy — — sinh 9y arccot(sinhng) + — + ————
(cosh? g — sin® §)2 T o (sinh7o) 7 mcosh®n,
Assume that the conducting loop is large enough to intercept all of the flux passing through the 7, surface.
We calculate this flux by integrating over half of the 7 = 7, surface

z 0
® = (=7 Dy / ’ H (16,8, p)a?y/ cosh® ng — sin® 6 cosh 7, sin fdipd
0

-

1 1 1
= ,uOHanZrZ— coshng [sinh 19 — — sinh 7y arccot (sinh7g) + = + ———2—]
T T mcosh®ng

Substituting for Hy, and converting back to the (£, {,¢) coordinates to be consistent with the appendices

I 2
®= Foa - 1+¢ [ﬂ'(o ~ {parccot ({o) +2 — a ing)]

We note that the ¢ coordinate in the appendices range over positive values in the region of interest, while
here the ¢ coordinate ranges over negative values. We re-write the above changing the sign of ¢ and
remembering the branch cut definition arccot(—¢) = m — arccot(+()

I ¢2
®(~Co) = —poag=y/1+5 [co arceot ((g) = 2+ 17 +Ogg>] (26)

which is the same as equation C-3.

In our example, we will assume that the conducting loop is constrained so that it never gets closer than
zt0p = 10 cm from the aperture. Therefore, using equation 19, (—¢o) = ztop/a = 2.00 and substituting in
equation 26, we obtain

oI

Vinax = %[0.152]-87
So for the most-likely case of the arc attaching to the edge of the a = 5 cm aperture, Vipaz = 0.152 x8.0kV=
1.2 kV. For convenience, however, whenever we are calculating the total flux through a quarter spheroid
in the future, we will use the fit function (equation C-5), which is

Lol ¢ oI
Vinax = % (0.4124) arccot ¢ — TOC% (0.07907) | = (27)

One question that arises is that the above analysis was conducted in free-space, while the Faraday cages -
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are usually filled with parts made of metal. If the metal pieces are highly conductive, such as aluminum,
or steel and are oriented such that the normal of the metal surface is parallel to the ¢, surface normal,

the metal will tend to prevent the I—-I) field from crossing the (; surface. The free-space analysis will be a
bound for this situation. If, on the other hand, the metal pieces have a high permeability, such as the soft,
laminated, iron used in transformer cores or ferrites, or if they are conducting as before, but are oriented
such that the normal of the metal is perpendicular to the ¢, normal, the metal will tend to increase the

=
amount of H field crossing the surface. The free-space analysis will not bound this situation. It is possible
to do analysis for this situation by imposing a perfect magnetic conductor (PMC) boundary condition at
Cg, but thought to be unnecessary, since we have never seen this second situation in practice.

Finally, we consider specifics of the loop geometry. Far away from the aperture — at least the aperture
diameter (2a) away — we can approximate ¢,, in terms of the magnetic dipole moment m,.

= WY
Om = 4nr3
myrsin 6 sin ¢
473
where my = ~2ay, H3®, oy = 4a®/3 for a circular aperture, H3® = Hp (the short circuit H field on the

interior side of the aperture, anticipating that we will eventually replace Hp with the term I/27a) and r, 6
and ¢ are the spherical coordinates. The 7 directed H field is calculated by applying equation 18.

_ _9%m
H = or
_ mysinfsing
- 27r3
4aHy
max —_
H; T 33
The 8 and © components of H are similarly computed:
10¢,,
He = 7%
__mycosfsing
- 4rr3
2a3H0
max
Hy 3mr3
_ 1 0o,
Hy = rsind Jp
__mycosyp
- 4mr3
2a3H0
max
B, 3mr3

The largest component is H™**, so we will orient the loop to maximize this component. If the loop is
in the vicinity of a piece of metal, we must double this value because the H field from the image in the
conductor will add to the direct field. If it is in a corner formed by two pieces of metal we must quadruple
the value. As shown in Figure 20, we will assume the loop is in the vicinity of a single piece of metal.

The magnetic flux is, therefore,
¢ = MOzH:-naxAloop

4a3H0
= #OQWAloop

37



Conducting
Metal Piece

Figure 20. Aperture Approximated by Magnetic Dipole

FIR 4

38



>V

Aperture

Figure 21. Lightning Current Guided Across Circular Aperture by Wire

Substituting for Ho we obtain
toa 4 a oI
Vma.x = = 5 -—=34loop Ty
T 3mrs Py (28)

assuming, as before, that the loop is 10 cm below the aperture (a = 0.05 m, » = 0.1 m) and, additionally,
that the loop area is Ajoop = 0.0025 m?, Vinax = 8.0 kV x 0.424 x 50 m~2x 0.0025 m? = 0.424 kV.

3.3 Lightning Guided By Wire Across Aperture

The worst-case, but highly-unlikely, scenario is shown in Figure 21. It requires the presence of both
a wire, which has fallen across the aperture, and worst-case lightning, which strikes the wire. The wire
guides the lightning current across the aperture and causes an A, field in the plane of the aperture.

H, ~ { e if |y] — b
Using equation D-2:

o = Hola [m 8a) 4
T b
We can get an expression for the voltage on a conducting loop located at the aperture and intercepting all

flux entering half the aperture.

_ ooy (8e) 4| U
| Vinax = - In 5 1 o (29)
As an example let us again assume that @ = 5 cm and b = 1 mm.(the radius of a typical wire), then
Vinax = 8 kV x{5.0) = 40 kV, which is large compared to the result when the lightning current attaches to

the edge (5 kV).

If we now take distance between the conductor loop and the aperture into account, but allowing the
loop to integrate all of the flux crossing a ¢, surface we can use the fit function of equation D-3 to obtain
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V1+¢
Vo = 02 2 + (0.9199) arccot o + ] o (0.6509) o (30)

™ Co + (1.436)b/a 2 Bt

As an example let us assume that a = 5 cm, that 2, = 10 cm from the aperture so {; = 2.00 and that the
wire is a filament of zero radius (b =0). Vpax =8 kV % [0.112 + 0.427 + 0.260] = 6.4 kV.

Finally, at su;ﬂ:icient distance away from the aperture, we can use the dipole moment and equation 18
to calculate the H field at the loop location and take the area of the loop into account.

_ Imyy
Pm = gy
my7sinfsin @
47r3
From equation D-1,
my = —2Ia* (31)
Therefore,
0%
T or '
my sinfsin
2713
a?l
P
and allowing the field to double inside due to the presence of metal pieces
@ = #02Hf’axAlooz>
2
= #02;:__,’:5‘4100;)
Vmax = u_:l'z%Aloop% (32)
As before if we assume that the loop is 10 cm below-the aperture (¢ = 0.05 m, » = 0.1 m) and, additionally,
that the loop area is Ajppp = 0.0025 m2, Vinay = 8.0 kV x 2 x 50 m~2x 0.0025 m? = 2 kV.

max —
Hoex =

The equations developed in this section can also be used to analyze the type of sensor shown in Figure
2. Since the plunger is made of a non-metallic material, we can ignore its effects and analyze the hole
through which the plunger fits as a circular aperture. Typically, ¢ = 1.0 cm for these types of sensors, so
using equation 25, (because the presence of the plunger prevents the worst-case scenario of a wire falling
across the aperture), we obtain V.« = 1.04 kV, without needing to take loop position or geometry into
account.

3.4 Uniform Electric Field Coupling

Only magnetic field can couple through a narrow slot — there is no significant electric field coupling.
Electric field can couple through the circular aperture, however, and we will examine electric field coupling
in this section. The analysis of this section has many similarities with Section 3.1 and uses the method
outlined in [6]. We ignore the effect of the cover or content geometry on the E field and simplify the
problem to that of a circular apertur_e) in an infinite ground plane as shown in Figure 22.Figure .23. shows
what is happening physically. An E field normal to the aperture enters the Faraday cage and induces
voltage on a wire inside.We begin the analysis by solving for the electric scalar potential ¢ when a uniform
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E field (Ey), exists on one side of the aperture. ¢ is related to the E field by the equation
E =-Vo (33)

and satisfies Laplace’s equation. We can again use the oblate spheroidal coordinate system shown in Figure
16. . Symmetry of the geometry and the form of the incident field makes the coefficients of all modes
in the general series solution (the same type of series as shown in equation 20) to be zero except for the
coefficients of m=0, n=1. Matching the potential at z = +00, where ¢ = Ercosf and at z = —o0, where
¢ = 0 yields

¢ = aEot [c - % (¢ arccot ¢ — 1)] (34)

Note that in the —z region, ¢ is negative and the branch cut definition is arccot(—() = = — arccot(+¢). We
imagine that lightning strikes the building where the Faraday cage is located causing a voltage difference
between floor and ceiling and immersing the cage in a uniform E field. In order to calculate the
field, therefore, we need specifics of the enclosing structure. This is markedly different than the H field
penetration, where we only needed the characteristics of the lightning current itself.

To obtain a solution for the potential without having to account for building characteristics, Appendix
E examines the case where a wire touches the center of a circular aperture and lightning strikes the
wire. The wire is prevented from entering the aperture by a sheet of transparent material that covers the
aperture. This case is shown in Figure 24.

Manipulating equation E-6, we obtain

E
Vinas m(zl;a/b) In (%)

Returning to our example where a = 5 cm and b = 1 mm, we assume that A = 3 mm, which is a typical
thickness for a transparent viewing port cover. We note from Figure 26 that for gaps of approximately
5 cm, Ep = 10 kV/cm, so Epa = 50 kV. Vpay then is 30.5 kV, which is large, but is bounded by the
wire-across-aperture case (40 kV) discussed previously.

Next we use equation E-10 to obtain

_ _Ba 1 1+¢3 )
Voo~ a3 (T an )
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If we take our observation point to be 10 cm below the aperture as in previous examples ({y = z0p/a = 2.00)
and substitute in equation 35 we obtain Vi, = 1.2 kV. This is a smaller voltage than the wire-across-
aperture case (6.4 kV) discussed previously.

It is interesting to note that in equation 34, if we set
3m/2
In (2a/b)
(where the quantities on the right hand side are defined in Appendix E), we find that the uniform field
solution preserves the far field dipole solution found in equation E-7.

Ey=Ey

4 Diffusion

A low-frequency, magnetic field can penetrate a finitely-conducting wall of a Faraday cage by means
of diffusion. Usually, when the conductivity of the wall is high, like that of aluminum, the voltage due to
diffusion is negligible, even if the wall is thin. We include the effect here to document the equation and
demonstrate that the voltage is small.

The worst-case situation for diffusion is if lightning current flows near a conducting wall, on the other
side of which is a cable loop having a length along the wall of [ as shown in Figure 25. Note that the loop
could be formed by a cable in combination with the wall, so the voltage induced between the cable and the
wall due to the magnetic field diffusing through the thickness of the wall is calculated in accordance to the
following formula for non-magnetic wall materials:

Vo Wil; [e_T{T+g (1+%> - <2+%) m}—%eﬁc(ﬁ)]

where T =t/ (4t), tg = poA%. The peak voltage is

4l
Va= m(OM) (36)
where ¢ is the conductivity of the wall, A is the thickness of the wall, I is the peak lightning current and e

is the base of the natural logarithm (2.718).

Let us assume that the wall of the Faraday cage is made of 6061 aluminum (o = 2.6 x 107 (2 —m)™")
and has a thickness of 1.5 mm. Assume that the length of the cable [ is approximately 0.3 meters. With
the above parameters V; = 260 V. This is much smaller than the kilovolt range of the other effects.

5 Standoff

Once the voltage available on the inside of the Faraday cage is calculated, we must determine if the
electrical insulation that exists inside the Faraday cage, such as air gaps and insulation around wires, will
hold off the voltage and keep current from flowing onto the sensitive contents. Because there is a wide
variety of insulating material present inside the Faraday cages, the only insulation that we will discuss
here is that provided by an air gap because that type of insulation is common to all. In determining the
amount of voltage that an air gap will hold off, we use the information provided in [8] for needlepoints
because needlepoints require the least amount of voltage to breakdown, and therefore, provide a worst-case
estimate; in other words, if the needlepoint gap won’t breakdown, other types of gaps won’t breakdown
either. The data from [8] is shown in Figure 26 for convenience.
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As an example, if the maximum voltage inside a Faraday cage is determined to be 3 kV and a critical
air gap is measured to be 15 cm, we see from Figure 26 that the air gap is expected to stand off 0.65 MV/m
or 97 kV (0.65 MV/m x 0.15m) so we don’t expect the air gap to break down.

6 Burnthrough

Burnthrough is associated with the continuing current component of lightning that occurs in late
time after the leading edge of the lightning waveform. The lightning arc becomes so hot that it melts
the metal at the attachment point and forms a hole. The lightning increases the size of the hole by
moving around the hole edge and continuing to melt the metal. Unpublished tests performed for Sandia
by the Bundeswehr Universitdt Miinchen (German Armed Forces University in Munich) where worst-case
continuing current was attached to plates of various metals indicate that lightning will not burn through
a 0.1875 inch thick steel plate, but it will burn through a 0.1875 inch thick aluminum plate quite easily.
The burnthrough holes are on the order of 1 cm in diameter. Fortunately, a standoff distance imposed
around the sensitive contents helps in this situation since it is unlikely that lightning will detach from the
edge of the burnthrough hole, pass through the hole and attach to contents several hole diameters behind.
If standoff is not imposed and the sensitive contents lie directly behind the hole, it is not clear what will
happen. A single test on a flat cable lying 0.2 inches behind a burnthrough hole indicates that the voltage
induced on the cable is less than 50 volts [9].
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Figure 1. Lumped Circuit Model of Transmission Line

Appendix A. Transmission Line Model

In this appendix we will examine approximations of the transmission line models in various limits in order
to show how simplified circuits follow naturally from more complex analysis. Using techniques described
in [A-1] we can obtain an expression for the voltage along a transmission line, which is driven by a current

source I at z =0 and is shorted at z = h and z = —h. A time dependency of /** is assumed.
Zol .
V(z) = Sah@Th) sinh(vh) sinhy(h + 2) where —h <2z<0 (A-1)
V(z) = _Zol sinh(+vh)sinhy(h — 2) where 0 < 2 < +h
= Simh(2yh) T 7

If the transmission line is lossless, v = jw+/L:0:C, which is the propagation constant and Zy = /L0t /C,
which is the characteristic impedance. C, the capacitance per unit length, is expressed in terms of the slot
parameters as

C’==eii-+ez [ln (ﬁ) +1n2—-7—
w T w 3
where e is the permittivity of the material filling the slot (8.854 x 10~12 Farads/meter for free space). Let
us calculate some of the above parameters at w = 2 x 10° radians/second for a slot having the following
dimensions: w = 1.0 mm, d = 25.0 mm and 2h = 500.0 mm. C = 0.255 nF/m, and L;,; = 43.6 nH/m so

v = .0067 radians/m. Since < is so small, the sinh(yz) terms in equation A-1 can be replaced by their
small argument approximation (yz) yielding

Zol

V(z)= T’y(h + 2z) where —h<z<0 (A-2)
Zol
V(z) = Lfy(h —2) where 0 < z < +h
These equations state that the voltage is zero at 2 = —h, increases linearly to the value of jwIL;oth/2

(substituting for Zy and +y ), and then decreases linearly to zero at z = +h. Recognizing that the expression
jwl in the frequency domain is equivalent to 8I/8¢ in the time domain, we have obtained

oI
Vpec = leota (A'3)

where leat = Ltoth/2.

From a circuit point of view, if we replace the transmission line by the lumped circuit shown in Figure
1, we note that at w = 2 x 10° radians/second we have the impedance of the capacitance (—;7.84 k) in
parallel with the impedance of the inductance (+70.011 ©).  Over five orders of magnitude difference
between the two impedances implies that the shunting capacitance can be ignored without affecting the
results.

If the transmission line is lossy (accounting for the conductive gasket), since -y has a large, real part, we
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can replace the sinh(yz) terms in the equation A-1 by €7*/2 yielding

Y (h+z)
Viz) = ezz_(’)ievheT where —h/2<2z<0 (A~4)
2ol 7h67(h_2)
V(z) = e 5 where 0 < z < +h/2

where we have changed the upper and lower range of z to ensure that we stay away from +h where our
approximation of sinh{yz) doesn’t hold. These equations state that the voltage at the current source is
ZsI/2 and that the voltage falls off exponentially in each direction toward the teminating bolts.

A.1 References

[A-1]P. E. Mayes, Electromagnetics for Engineers, Edwards Brothers, Inc., Ann Arbor, Michigan, 1965,
pp-1-103.
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Appendix B. Voltage with Lossy Gasket

Here we assume that a lossy gasket fills the slot and that the decay length in the gasket is sufficiently
short that we can ignore the ends of the slot when it is driven at the center with current Iy. We treat
the problem as two dimensional in the slot interior and it is thus convenient in this section to take the
coordinate along the slot length, the y coordinate in the slot depth direction, and the z coordinate in the
slot width direction. The fields are taken as independent of 2 in the slot interior. The problem is set up
with —co < 2 < 0, 0 < y < d, and 0 < z < w. We symmetrize about y = 0 and extend the region to
—d < y < d. This symmetrization requires us to double the drive current I = 2Iy. In the interior region
there is only E,, H,, and H,. Maxwell’s equations with time dependence elvt are

V x E = —jup,H

VxH=J+(04+jweg) E

where p, is the magnetic permeability of the gasket, o is the electric conductivity of the gasket, and &4 is
the electric permittivity of the gasket. Eliminating the magnetic field gives

VxVxﬂ:V(V-E)—V2E=—jwugJ——jwug(ag+jwsg)E

Taking the divergence of the field to vanish (0F,/0z = 0), with only a 2z component, gives

(V2 + kg) E. = jwpyJ.

where the complex gasket wavenumber is found from

k§ = —Jwpg (09 + jwe,)
Note that Im (kg) < 0. The current is taken as a zero radius filament at the origin in the z direction
92 & 16 8 162 8 (p)
=t =+ k2 E, = | = pa + = + k2| E, = jup, I8 (2) 6 (y) = jup, ] ——
(Zr+ 2+ 2) B = [ 503 + 3 00m + 2] B = oy (216 4) = oy 1 510
The electric field radiated by the filament (two dimensional Green’s function), without boundary conditions
is

i : —J 1
B: = (~jwnl) Z-HE (kgp) = —wpylos HY (kv +9)

where Hé2) (z) = Jo (2) — Y5 (2) is the Hankel function of the second kind. The y = +d edges of the
symimetrized slot interior are taken as open circuits. This implies the boundary conditions

H, (z,+d) =0
The magnetic field is found from the electric field by means of

. OF,
—JwpgH, = By
Thus we want
OFE,
—(z,2d) =0
o (e k)



and

Ez (xvy) _)07 z — o0
The total field can thus be expanded in the modal series

oo
E, = Z:Ane_jl:”| kg —n*m/d% cos (ny /d)
n=0
Substituting into the Helmholtz equation gives

EA ( + k2 n27r2/d2) e~ IBlVEG =R /d oo (nary /d) = JwpgIé (x) 6 (y)
n=0
Using the orthogonality relation

d , 2d
cos (nmy/d) cos (n'my/d) dy = E—énnr
—d n

where £, = 2 for n > 1, but equals unity for n = 0, gives

2 s 2 2.2 2
A (3 +k2 n27r2/d2> e~ dlel/kg—nin?/d = jwuyIé (z)

912
Integrating over a small dlstance about the origin
A
/ dr,A—0
-a
gives
2d .
—j;An2, [k2 —n?r?/d? = jou,l
or
A = —wp,len

4, /Is:gd2 — n2m2

Now we want the value of the voltage

V=-EFE,w
at r =0, y =d. This is given by

I
w'ug Ownz_o 1/l<:2d2 n27rQ

1 1 b n 1 1 2
= Ew,ugfow T +22(—1) - — —7=1In2 (B-1)
9 n=1

\ /kng —n2g2  (—Jnm) T

where the sum
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— (-1)" _
T; —— =-In2

has been used. Note that the asymptotic form for ksd — 0 is

WHew 2
V/(15/2) hd Jwpgw= In2
Zo - jwp w2 n2 (B-2)
0~ jwpgw=In

where Zg = (w/d) /jwp,/ (0 + jwey) is the characteristic impedance of the gasket filled stripline and the
reactive term results from the characteristics of the filament drive..

When kg,d >> 1 we can take the solution to be asymptotically the sum of the incident field and a
reflection in the y = d boundary

E, ~2E} = —wp, I H? (kyd)

and
V ~ wop loHP (kod)
We can also add the remaining images in the y = —d boundary to obtain and alternative representation for
1%
[e o]
V =wwpylo Y HSD (kg (2n+1) d) (B-3)
n=0

Figure 1 shows a comparison of equations B-1 and B-2. As the conductivity becomes large, equation
B-2 overestimates the voltage.
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Figure 1. Comparison of Equations (B-1) and (B-2), d=25mm, w=3mm
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Appendix C. Electric Current Filament Normal to Plane at Hole
Edge

The lightning current I is positive 2 directed, it is attached to the edge of a circular hole of radius a, and
is normal to the plane containing the hole. The problem is to find the fields penetrating the hole. The
magnetic field is represented in terms of the scalar potential

-
H=-V¢,

where in regions free of current

Vi =0
Here we will first use cylindrical coordinates to represent the short circuit field (the field with the hole

shorted), then transition to oblate spheroidal coordinates to solve the actual problem. The short circuit
drive can be taken as

se_ L __1I vy __1 y
Grr = 5 ¥ = QWarctan(l_l = 27Tarctan z+a

L arctan | ———f ) = L arctan _(p/a)sing
2 pCosp +a 2 1+ (p/a)cosp

where —m < ¢’ < 7 is the cylindrical coordinate with origin at the wire, 0 < p < co and —7 < ¢ < 7 are
cylindrical coordinates with origin at the aperture center. The relations between the Cartesian (z,y, z) and
cylindrical (p, ¢, 2) systems are -

T = pcosyp
y = psing
Z2=2z

Expanding in cylindrical coordinates we can write

b = 5 [— > % (—p/a)™ sin (msa)J ,0<p/a<l

m=1

= —% [cp +3 7_711_ (=p/a)" " sin (msO)] ,pla>1

The total potential is taken as
Pt =3+ G, 2> 0

=¢,,,2<0



where ¢,, is the potential scattered by the hole. Continuity of the normal magnetic field at the aperture,
the fact that it vanishes on the conducting plane, and the vanishing of the normal component of the short
circuit field, means that

& continuous at z =0

Oz

0é,,
0z
Continuity of the tangential component of the magnetic field in the hole means that

(prp,2)=0,a<p<o0

m (0:0) + 61 (P9, +0) = ¢ (P, 9, —0) , 0 <p<a
Noting that ¢,, is odd in z gives

s
¢m(pv¢:+0)=_§¢'n’i(pa¢)70<p<a

If we immerse a PMC (perfect magnetic conductor) disc of radius a in a potential field

; 1
$m (P, 0) = 500 (P ¢)
we will find the same scattered potential as the hole problem in the upper half space 2 > 0 and negative the
scattered potential of the hole problem in the lower half space 2z < 0 (the incident and scattered potentials

in the disc problem are even in z). We will, therefore, solve the PMC disc problem and use the results for
the hole problem.

C.1 PMC Disc Solution in Oblate Spheroidal Coordinate System

The incident potential is taken as

& (prp) = -;-aﬁfr‘f (p,p) = —4% [— > '7% (=p/a)™ sin (mcp)} ,0<p/a<l
m=1
I 1 .
=-0 [¢+ Y —(=p/a) Sln(mw)} ,pla>1
m=1

The relation between the Cartesian system (z,y, z) and the oblate spheroidal system (£,¢, ) shown in

Figure 1 is [C-1]
z= a\/l-I—CZ\/l — & cosy
y=ay/1+¢%/1-€sing

z=ag
where —1 < £ < 1,0 < { < 00, and —7 < ¢ < 7. (Note the differences in the coordinate ranges shown in
Figures 16 and 1). The relation between this system and the cylindrical system is
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Figure 1.

hsassss®

Oblate Spheroidal Coordinate System Used in Appendix

56



Note that

r=Vpt2=a\1+-€~al, (-0

The general solution of Laplace’s equation in this system is
Y

Om (G E®) = D [Amn Pl (5¢) + BmaQ (GO] [Comn PT (€) + Drmn @7 (€)] %

n

[Emn sin (mip) + Frnp cos (mep)]

where j = y/—1 is the imaginary unit and P7* and Q7" are associated Legendre functions. The definitions
of the special functions corresponds to that given in [C-2] and [C-3]. We eliminate A, so the scattered
potential decays as { — co. We eliminate Dy, so the scattered potential remains finite along the z axis
¢ = 1. We eliminate F,,, by symmetry and thus

Sm (GE9) = > BmaQR () P () sin (me)

n=1m=1
where P* (€) = 0 for m > n has been used. The boundary condition on the disc for the scattered potential
is

O (0,6,0) = —¢%, (€,9)

As a result of symmetry in the disc problem, the boundary condition a—gzm (p,p,0) =0fora < p < o0,is
automatically satisfied. We need to expand the incident potential in the aperture in order to match the

boundary condition. Letting ( =0 and p/a = /1~ 52 in the cylindrical coordinate expression gives

. I x m
¢%(§,¢)=EZ%<—\/1—£2> sin (mg) , —1 < €< 1
m=1

Noting that [C-4]

Pal®) = 2 [f"+0(")].¢—0
and [C-2]
P () = (— 1 —52) T Pa(€)
gives
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P26 = ot - 1—52)m

and thus

B (&) = 41; Z mzz;m), ™ (€)sin(my) , ~1< &< 1

Applying the boundary condition on the disc and noting the orthogonality relations

/ sin (m) sin (m' @) dp = T mm

-7

/ sin (mep) cos (m’p) dp =0

-7

and [C-2]
™ ( (n +m)!
gives

Reversing the sign of the scattered potential to find the result appropnate to the hole problem yields

I
¢‘m (<7 §7 = 4_

m 1

C.2 Dipole Moment

The field far from the aperture is found from the dipole moment of the aperture. The asymptotic form
of the Legendre function is [C-2]

(-1)"2(n+m)!

(3) 23"
where (u), =T (u+n) /T'(u) =u-(u+1)--- (u+n—1), (u)y =1, and I (z) is the gamma function [C-2].
Therefore, the n = m = 1 term is dominant far from the aperture. The values of the denominator Legendre
functions are given by [C-2]

Qn (3¢) ~

¢—o0

m (o) = o1 27T ()

The function for n = m = 1 is actually
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Qﬂx)=v1+8(mmm<—lfg)

where 7/2 > arccot ¢ > 0 for 0 < { < co. Thus

Q1(i0) = 5

. 2

and we can write

L Q1069 p1 eysino e L4 (. 1-22) s
G ~ 2 Ol (jO)Pl (&) sing ~ g ( 1-¢ )smSO

Ia%y
3n2r3

where we have used y ~ al+/1 — 57 sin and r ~ a{ as { — co. The potential of a magnetic dipole is

m- T
Orm 473
Thus the dipole moment in this case is
2
m=-25 (C-2)
3

It is interesting that for a plane exciting field the dipole moment of an aperture is [C-5]

—
— —
m=-2a, - H*

The polarizability for a circular aperture is a diagonal tensor

— —
m = —2a, H*°
and has the value [C-5]
This implies that
= I
se_ __ - =~
™= 27ray

which is the value of the field exactly at the middle of the circular aperture.

C.3 Magnetic Flux Through Quarter Spheroid

The magnetic flux crossing one quarter of an oblate spheroid is now found. The magnetic flux crossing
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a quarter spheroid with surface at { = ¢, is [C-1]

0 2. 2 0 1 2o
v=po [ ST [ af+Q) (- [ZTETE Gl

0d,,
e
Using the above eigenfunction expansion and noting that [C-2] P7* (=€) = (=1)™1" P (¢) gives

0 Q0
=—#oa(1+Cg)/_ld§ [ 4% (6. ¢)

I & 2m iQm (%) [° pm °
@ = —poa~ > m@m) (1+¢3) W _IPm (&) d€ | sin (mep) dep

m=1

I & amml M ( ; 1
= ooz Y sy (1+ B 2T [ e ) ae L 1 - cos (mm)
m=1 0

I 2 mm) Q5 (0)
U B < O § 2 1Qm (G%o) [ 2\
= megs 2 (0 6 o) /0( 1"§> &

The integral can be carried out as

/01 (\/1 —§2>md§= -;-/01 (1—u)™2y=12gy

1p(2 1)) -
- '2) ()
where B (p,q) is the beta function [C-2]. Note that for m odd

/1 < 1 -—52)md§ _ (2) (mt)/2
0 2 (=)
The recurrence relation for the derivative of the Legendre function is [C-2]

(1+¢8) Q" (3¢0) = (m+n) (n — m + 1) \/1+ QT (5Co) — mLo@7 (3¢0)
This yields the expression for the magnetic flux through the half spheroid

T & (B menye |2V G (3¢0) — CoQm (7o)
= —hoty m% m (28! Q= (j0)

Note that for m = 1 only we use

« 1, - 2
(1 68) TG = 2 [omecorco —2+ B/ (1+ )] /14 3
to find



I[(1+¢)iQ1G I
@~ —pgag ( 45)%’(%1) G 40)] = ~poay= [oarccot (o — 2+ 3/ (1+¢E)] {1 +G5

The limit {; — oo is the flux through a quarter sphere by the dipole field

1 a
@/ (uola/m) = %5

C.4 Magnetic Flux Through Half Aperture

Taking (o = 0 in the preceding formula gives the magnetic flux through half the aperture

1
I (5)(m+1)/2 Qr—1 (50)
@ = _/.Loa- ™ mm T
mz,odd m (! Qm (40)
The relation for the ratio

JQm (30) _ Q= (j0) _ L (=5=)C(1+25")
om0 (m+n)(n—m+1) om0 ~(m+n){n—m+1) T+ n—?+l)r(n+gﬁ1)
gives
QE G0 _, @ (0) __, Lim+l) _ 2 m!
Qm (70) Qr (50) LET(m+3)  7G)n
Therefore

I & ™ (%)(m+l)/2
b= ppas- Y N2
% 2 TE(EE (1)

To accelerate the sum we note that the asymptotic form of the summand is

M (3) ey 2 _ I'(mT (%)
m? (21 (3),, (m+DT (BT (m+3)

(o)
~1-=) , m-x
m

Using the known sum [C-2]

we can write

q)_auOI i m!(%)(m+l)/2 1 N 72
R PIR ==y Ty ) G v

m,odd



Numerical evaluation yields

I
d =~ "'% (0.6478) (C-4)
It is interesting that the m = 1 term of the original sum (without the subtraction of the asymptotic form)

gives
I
&~ “—‘7‘:’— (0.5)
This is the result of the plane field term (m = 1).
C.5 Fit Function for Magnetic Flux Through Quarter Spheroid
It is useful to have a simple fit to the flux through the quarter spheroid as a function of {,. Using the

distant dipole moment behavior (along with arctan{y ~ 1/{y, {o — o0) and the flux in the aperture limit
(along with arctan (0} = 7/2) we can write

Ll 2 G (2p ]
® ~ - F()Trarcco‘cg0 = 7rFg 3 (C-5)
where

Fo = 0.6478

The various approximation discussed in the paragraphs above are summarized in Figure 2. Note the
asymptotes shown by dotted lines on the left side of the plot indicate the flux integrated over half the
aperture taking into account only the m=1 mode (0.5) and taking into account the higher order modes
(0.6478). Note also how well the fit function of equation C-5 (solid line tagged with open squares)
approximates the exact flux of the more-complicated equation C-1 (solid line).

C.6 References
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York, pp. 147, 366, 796, 799, 998-1000.

[C-4]H. Bateman (Bateman Manuscript Project), Higher Transcendental Functions, Volume 1, McGraw-Hill
Book Co., Inc., 1953, p. 151.
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New York, 1986, pp. 439, 441.
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Appendix D. Electric Current on Wire Across Aperture

The current I is now taken to be positive = directed and bisects the aperture along the z axis. We first
assume the current exists on a zero radius filament. Later to find the flux passing through half the aperture
the actual radius of the wire will be required.

D.1 Filament Solution on Polarized Magnetic Disc
There is a discontinuity in magnetic potential introduced at the zero radius filament. In the actual

problem the z directed field is even in z (the magnetic potential is thus odd in z). The boundary conditions
can be taken as

ﬂ continuous at z =0
0
—¢—'"=O,a<p<oo
0z

b (0, —0) = (I/4) — (I/4)sgn(p) ,0<p<a

¢m(pa(p7+0) =—(I/4)+(I/4)Sgn(<p) ,0<p<a

It is convenient to change the symmetry of the problem in a way similar to the preceding section by
taking the potential to be even in z

bm (010, £0) = (I/4)sgn(p) ,0<p<a
This is the problem of a PMC disc of radius a, charged to two different magnetic potentials. The boundary
conditions on the actual surrounding plane are obeyed via symmetry. The field in the upper half plane
z > 0 is the same as the original filament problem. The field in the lower half plane is minus the filament
problem. The solution to Laplace’s equation in oblate spheroidal coordinates is again

bm (665 9) ZZBMQ (5¢) Pi (&) sin (myp)

n=1m=1

Applying the disc boundary condition on the potential

¢m(07§1¢) = (1/4)Sgn(‘)p) 1] -1 <§ < 17 -7 < w <
and using orthogonality, gives

B Q7 (50) (2n2_*_(1;)_’£:l__ / P (£) d£/ sin (m) d

1 1
=I/0 Py (§)d§E[1—cos(m7r)] , m+n even
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1
=I£/ P () dE, mand n odd
m Jo

=0, otherwise

The integral can be carried out by means of the identity [D-1]

(-1 72210 (1 + v +m) (m+v+1 m—v m 3+m >
P = , =+ Lm+1,——;1

/ () dt = TR+ TR+ ) TA-m+v) > ° 2 2 2 2
where the generalized hypergeometric series

2\ (1), (02), (a3) 2*
Fa,a’a,;b,b;z= —_——
3F% (a1, az,a3; 61, b2; 2) kz=:0 (b1); (b2);,  &!

terminates when any one of the first three arguments is zero or a negative integer (for integer order and
degree). The result for odd integer degree and order is

/01 P:ln (E)d{ — - 7T(n_+_777’)!777’! (%)' R (—1)k (m 2n l)k (% + 1)k

22m+1 (==Ll (n — m)! (m+ k)! (k + =LK (252 - k)]

The potential in the filament problem for 2 < 0 is thus

k=0

o n m 1
b (G.66) = —iz > e ) ) S T Pr @sin(me) [ P €)as

D.1.1dipole moment

The dipole moment contribution to the potential is found by retaining only the n = m =1 term

5 _13GLGO
” ™2 Qi (50)

I1 J Ia%y
27r§ 1- ¢ sing ~ 2nr3

1
P} (€)sing /0 P} (€)dt

Thus the dipole moment is

m = —21d*3 (D-1)

D.1.2magnetic flux through quarter spheroid

The magnetic flux through one quarter of a spheroid at { = (; is

0

o [° 8¢m
® = —pga (1+go)/ld§ dso (€os&: )
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2
=_"#0aI Z Z (2T:n—;;n+m)| ) (1"’(0) Jg?n ((JC)O) [/ m(f)dﬁ]

n,odd m,odd

_ 2 ol i i (@n+1)(n-—m)(m+n)(n-m+1)4/1+ QT (5¢o) — Mm@ (3o0)
- W#O n,odd m,odd m? (TL + m)' Q:zn (]O)

x Uol P:‘(&)d&]z

Note that the n = m =1 term gives

3~ —,anI [Coarccot (o —2+¢5/ (1+¢3)] 1+ ¢5
The ¢y — oo limit is the flux through a quarter sphere by the dipole field

Ta

@/ (solo/m) ~ 50~ 5

D.2 Extension for Small Values of (,

As the aperture is approached ¢, — 0 it is very difficult to sum the series for the flux. As an alternative
we assume that for small {y flux changes occur as a result of proximity to the current filament along the z
axis. The field about the filament in the y = 0 plane, for —a < z < a, ignoring perturbations caused by the
boundary of the hole, is

Hy(y=0)~ 52

In spheroidal coordinates for ¢ = 0 (z > 0) this becomes

I
HSD (Cvgy 0) ~ 27TCLC§

If we consider the amount of magnetic flux between two spheroid surfaces {, and (;, along the length of
the wire —a < z < a on y = 0, we have

¢y 1
<I>f(<1,<o)=2uo/C /EH¢(<,§,0>a\/5 ’f dta \/51:52 d

where £ = £, when z = a (the wire end)

b=
R e

For small values of ¢ (as the spheroid surface approaches the aperture) this flux change should be
approximately the same as the flux change crossing surface of the spheroid. Thus we should be able to write

@ (Co) ~ @5 (C1:60) + 2(S1)
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We take {, to be the smallest value of ¢ for which the flux can be computed reliably from the series solution.
For example, the value of the series including terms up to NV =21 is

I
3(0.5) ~ “OT“ (2.0178)
The value including terms up to N = 11 is (2.0092). Carrying out the indicated integration in

¢1 1
B (1, ¢o) = Hof2 / g /(§+c2/§) ad

T Je (V14 g 1-¢
gives
1 1+4/1—€2
2 @& [T e 2 0
/50 (§+</§)m_ 1 €0+< hl( 60 )
1 9 1++v14¢
Ve A ( ¢ )
and thus

or

B (¢1,%0) / (noTe/) = [m (ﬁ) s (1eyied) fn (14 Vi @) 1}

¢
1 Vi+Z-1
+(1~In¢)\/1+ ¢+ shn | t==r—
2 \V1+%+1 t
If we take {; = 0.5 and {g = 0.25 we find

3 (0.25) / (uola/m) ~ 0.7599 + 2.0178 ~ 2.7777

The value determined from the series at {, = 0.25, for N = 21, is (2.7282). The value determined from the
series for N =11 is (2.6777).

Note that the asymptotic form of the flux as {; — 0, predicted from the above formula, is

&/ (ugla/m) ~ —In(2¢p) + 1+ 1.13398

~ —1In(¢g) +1.4408, Cp — O
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D.3 Displaced Wire Across Aperture

The actual wire with radius b is taken to be displaced upward from the aperture by distance b (so that
its bottom surface is flush with the aperture). The field below the aperture for y = 0 and —a < z < a, is
thus

I
27 (2 +b)
In spheroidal coordinates for ¢ = 0 (z > 0) this becomes

Hy(y=0)=

I
Hv(C,é,O)Nm

The amount of magnetic flux between two spheroid surfaces ¢, and (;, along the length of the wire

—a<z<aony=0,is

pola 1 &+¢
T Je \/H? g (C§+0b/a) /1 ¢

where again § = £, when z = a (the wire end). Using the result

q)b (Cl’ CO) d§

/1 1l &+¢ [ sn?o+
& (gf'*'b/a’ \/1— arcsin §g (<51n9+b/a)

1 /2 . b2 /a2 + ¢*
B F -/a.rcsin£0 [Csme-‘b/a—f- (Csine-f-b/a)] d6

2 /.2 4 pr/2
=-1—\/1—-§%—%(b/a)(*n’/2—-a.rcsin{o)+b—/ii - el

C C2 arcsin &, (C sin + b/a)
and the identity from [D-1]

(b/a) tan (6/2) + ¢

de 2
—_ b2 2 2
/ EXETD ____.____bz/az — arctan [ r——b2/a2 o } 6% /a* > ¢

= . In (bfa) tan (6/2) +< ~ v ¢ e , b /a® < (2
V¢ — b2 /a2 (b/a)tan (8/2) + ¢ + 1/¢? — b2 /a2

as well as

. €o
tan | — arcsin§ > =
(2 AU ey 1+\/1+c§

gives
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R /ﬁ/ 2 do
* arcsin §, (C sinf + b/a)

v. = arctan( b/a+c>—arcta.n ¢ 1+ VI+¢ +b/a , b2 /a2 > ¢?
/b2/a2—C2 bja—¢ \/b2/02_<2 14++v/14+¢

v vt (e #0) (e Vo) Bat < &

\/Cz—bz/a"‘ VEtblat V(- b/“gb/a+(1+\/mf)(< g—b2/a2> ’
] e R IR ) L
Ve vl | (Versasveam) {¢(cr/E- e ) + (14 VITE) b/a)

Taking ¢y > b/a we obtain

5 (¢1,C0) = #(;TIa /Cl \/liii_EZG €)
where °
5: (Cf-:b/a) f/;cfdé G() = Cm <2 (b/a) [7!’/2 arcsin ((/ 1+¢ )]
T MR L i | G i )8 o

In |2
+<2\/42 ~ b2/a? (\/g ¥ bja+ /T b/a)2 {c <g +4/¢2 - b2/a2> + (1 + m) b/a}

The flux ®, ({;,{;) was evaluated by numerical integration. The extrapolated flux through the quarter
spheroid was taken to be

7C02b/a

@ (Co) ~ @6 (€15 C0) + 2 (C1)

where again ¢; = 0.5 with

2(03) ~ 222 (2. 0178)

was used.

o~ D.4 Potential for Assumed Charge On Polarized Magnetic Disc

The flux for the filament solution will exhibit a logarithmic singularity if we attempt to take {; — 0.
To overcome this problem we first subtract an assumed solution that has the same singularity then take the
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limit. The flux associated with the assumed solution can then be added back for a finite radius wire.

First we determine the potential for this assumed solution. We take the magnetic disc to have fixed
magnetic charge with assumed density (on each side of the disc)

a _ ol
Im = 2my
In the oblate spheroidal coordinate system this condition is

1+C0 a¢m (CO § 4;0) — /"’OI
Vﬁ +¢ 3 27ra\/1+(g\/1_—?251n90

where we take (5 — 0

_ 9o I €]
¢ 0.6:¢) = 2rsing /1 —¢%’

Again the Laplace solution is taken as

~l1<é<]l, - m<p<T

2 (RN ZZ Q@ (7€) P (€) sin (mep)

n=1ms=1

Inserting this into the assumed magnetic charge condition, using orthogonality, gives

o om iy 2otmt T €ldE [T sin (my)
~BrniQn’ (10) (2n+1)(n—m)!7r—27r/ B (é)m —x Sing d

_2 Pm(g) €d£ sin(mw)

w V1-— sin ¢

dp, m+n even

Using the result [D-1]

/ Mdg@=ﬂ', m odd
o sing

=0, m even

we have

et 2(n+m)! - &d¢
—-BZ m 0 =2 | P, ,
e Qn (4 )(2n+1) = )!71' /0 n (€) \/1—-_—§§
Using the result [D-1]

m and n odd

gdg 2“"I“(—z‘i) (V—#+1 vip l—p 3—p )
P“ ,——5— F: - , 3 1—p,——;1

as a guide, we find in the 11m1t for degree and order as odd integers gives



(n+m})/2

v g o (n+m (2=3+)
frozs-rt () L OV st e

k=m

The potential in the filament problem for z < 0 is thus

a _I @) (=m)! QT () pm (4 " pm gy £
8 (G.69) = Zd"; Al P sin(me) [ PR (O)

D.4.1dipole moment

It is interesting to calculate the dipole potential in this case. The n = m =1 term is

a 31 Ql (JC) Pl : Pl §d§
¢m 271'le/ (]O) (g) Sln¢A 1 (5) /_—71 — §
I1 . Ia%y
N_-4—WZ§ 1—5251ng0~—47”_3

where we have used the fact that ;@) (j0) = —2. The dipole moment is thus

me = -1’y
It is interesting that this is exactly half the true result for the filament problem.

D.4.2 magnetic flux through quarter spheroid

The magnetic flux through one quarter of the spheroid { = ¢, is

0 9¢2,

0
&% = —ppa (1+C(2,)/1d§ & ¥)

_2, ~ Q) (n—m)t e JOR (jco) m pr (6) 5%
- 77 In%dmgd m (n + m)! ( +CO) Q™ (50) P (é) dﬁ/ (é) \/—?

Note that for n = m = 1 we have

-
(1+¢) %%,((JJ%)—) = —% [Coarceot Go — 2+ 5/ (1+C5)] /1 + G5

3
P ~ —p0a11—6 [(0 arccot (o — 2 + (2/ (1+ 43)] V14 ¢

half the previous result.
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D.5 Difference Flux Through Half Aperture

Now we take the difference flux

AD =0 - &°

=——NoaI Z Z @n+1)(n-m) (1+¢3) 5Q7 (5¢0)

n,odd m,odd n+m)'
1
fdf—gg] JRGE:

1 v 1 -
[sz 5, PO+ T [, B

and let {5 — 0
2n+1) (n—m)! | JQ7 (0) / /
Ad = =2 m m
/ (wola/m) g%g%d mm+m O GO) P (&) dé+ | P
x /0 P (€) dt
where for both n and m odd we have
JQR (30) _ ) ()
Qo) S erl)()( 2 )E‘)z
n (n—m)/2 (n+m)/2

Numerical evaluation of A®/ (ugla/7) = S has been carried out including terms up to n = N. The value
for N = 11 is 1.345023694. The value for N = 15 is 1.355276395. The value for N = 21 is 1.363722349. The
original logarithmic divergence in @ corresponds to a O (1/n) term in the series for {; — 0. The subtraction
of ®* cancels this logarithmic divergence and is expected to lead to a O (1/n?) term in the summand for
A®. The infinite sum thus should have the form

S =Syv+ Ry
where the partial sum (to n = N) is Sy and the remainder Ry is taken to have the asymptotic form

Ry ~C/(N +1)
Using the N =11 and N = 21 results we find

C = 0.493644492

S =~ 1.386160735

(Note that, if we had taken the remainder to have the form Ry ~ C/N + D/N% ~ C/(N —D/C),
and used all three values N = 11,15,21 to determine the coefficients, we obtain S ~ 1.386339736 and
—D/C = 0.9513). This result produces the value 1.355307954 for N = 15, which has an error of 3 x 107>
from the calculated value. Thus we take
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AD/ (pgla/7) = 8 ~ 1.3863 =~ 2In2

as the approximate value.

It is interesting that if the n = m = 1 term is the only one included we obtain

3m
AY/ (pgla/7) =~ 16 [¢oarccot Co — 2 + ¢s/ 1+ 43)] 1+ ¢3
The limit {y, = 0 gives

A®/ (uola/m) ~ %” ~1.178

D.5.1 half aperture magnetic flux for finite radius wire

To obtain the half aperture magnetic flux for the finite radius wire we first integrate the assumed
magnetic charge over the appropriate surface from the wire radius b << a to the edge of the hole

a pi/a?—y2 a
iy =/ / 05, drdy = Eﬁ/ vaZ— 3/2-1-1—g
b J—q/aZ—y? T Jb Yy

/2 /1 — 2
=u—°q£/ (csc6—sin€)d0=“°aI [ln(1+ 1-%/a )—\/l—b"’/az]

m arcsin(b/a) T b/a‘

~ pOI% In (2a/b) — 1] ,a >> b
Adding the correction gives the total flux through the half aperture

By = B2+ AD = pOI% In (8a/b) — 1] (D-2)

D.6 Fit Function for Magnetic Flux Through Quarter Spheroid

It is again useful to have a simple fit to the flux through the quarter spheroid as a function of {;. Using
the distant dipole moment behavior (along with arctan{y ~ 1/¢g, g — ©0), the flux in the aperture limit
(along with arctan (0) = 7/2), and the extrapolated asymptotic behavior when the wire radius is zero we
choose

V1+¢ 2 Co (2. =
&/ (pgla/m) =~ In ¢ Bibja + Fl—ﬂj arccot (o — It (;Fl - 5) (D-3)

where the value of the flux crossing the aperture @/ (pola/7) = In(8a/b) — 1, {y = 0 is used to set

Fi=In(86;) -1
and the extrapolated asymptotic behavior of the filament ®/ (ugla/7) ~ —1In((p) +1.4408,b5=0,¢(; — 0
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Figure 1. Plot of Various Flux Approximations When Wire Lies Across Aperture

is used to set

B, ~ 1.4446

It is curious that we nearly have F; = In(88;) — 1 = 3;, which has solution §; ~ 1.4532. Note that,
although the contribution of the logarithm contributes a term —3;b/ (aly) as {; — o0, this is taken to be
small compared to the remaining contribution 7/ (2¢;y). It is believed that this contribution is actually the
proper correction for the displaced line source in the hole.

D.7 References

[D-1]1. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products, Academic Press, New
York, pp. 147, 366, 796, 799, 998-1000.
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Appendix E. Electric Line Charge Normal to Hole

In this section we look at the voltages created interior to a conducting enclosure with a circular hole of
radius a when a semi-infinite electric line charge g exists exterior to the enclosure. This model is attempting
to address the worst case pre-return-stroke phase of the lightning channel development. The electric field
penetrating the hole is found.

E.1 Decomposition of Exciting Potential

The electric field is taken as the gradient of a scalar potential

E=-V¢

where

V26 = —p,/eo
We ignore the presence of a dielectric sheet in the hole and treat the media as free space; go ~ 8.854 pF/m
is the electric permittivity of free space. The electric charge density is p,.

If the aperture is shorted the line source can be imaged in the ground plane. Thus the short circuit
potential satisfies

2 sc_ _906(p)
Vit = - S (2)

where p is the cylindrical coordinate and sgn(z) = 1 for z > 0 and sgn(z) = —1 for z < 0. Thus the short
circuit potential is given by

p%c = 2 / R’ dz’ 3 / 0 dz'
o -2 SRR e
q arcsinh{(R—=z)/p} ~arcsinh(z/p)
o — / d’U. - / du
4meg —arcsinh(z/p) —arcsinh{(R+2)/p}

471(']50 [arcsinh {(R — z) /p} + arcsinh (z/p) + arcsinh (z/p) — arcsinh {(R + z) /p}]

-9 ;
= Sreq arcsinh (z/p)

The total potential is taken as

¢tot=¢sc+¢’z>0

=¢,z<0
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where ¢ is the potential scattered by the hole. Continuity of the tangential electric field at the aperture,
the fact that the total potential vanishes on the conducting plane, and the vanishing of the short circuit
potential, means that

¢ continuous at 2 =0

o(p,2)=0,a<p< o0
Continuity of the normal component of the electric field in the hole means that

9o°*c 0 0
- ;)Z (p’+0)_a_<zb(pv+0) = _-8—2—5 (p7_0) ,0<p<a
Noting that —%f is odd in z gives
O¢ _ 19¢%°
32 (P7+0) - 2 82 (p7+0) 9O<p<a'

If we immerse a PMC (perfect magnetic conductor) disc of radius a in a potential field

, 1
& (p,2) = 56 (5,2)

we will find the same scattered potential in the upper half space z > 0 and negative the scattered potential
of the hole problem in the lower half space z < 0 (the incident and scattered potentials in the disc problem
are even in 2).

The aperture potential then satisfies

V3¢ =0
in the upper or lower half spaces. The boundary conditions are

The boundary condition on the disc for the scattered potential is
9 8¢’ g
—_— +0) = +0) =
55 (P E0) = 5~ (0, £0) Treop

To obtain the aperture potential in the lower half space z < 0 we reverse the sign of the disc potential

¢ — —9.
E.2 Oblate Spheroidal Coordinate Solution

The aperture potential ¢ is now expanded in oblate spheroidal coordinates

$= AnPr(£)Qn (5¢)

where the functions P, (j¢) are not included since this potential decays at infinity. Also the functions
Q@ (§) are not included since it must be finite at £ = 1. Now using orthogonality [E-2]
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/_ RACEMGES (—‘5——

n-+ 5)
and the above boundary condition

15¢(€ 0) = gsgn (§)
REE dmegy/1 — €2

gives

jQn(J0) _ ¢
—An "n+1/2 47re/ Fn (€)

Thus for n even the coefficients vanish and for n odd

\/52

L iQuG0) _ g [ £d¢
A"n+1/2 - 2weOA P (€) Vi-¢

The identity [E-3]

[ P ) g = LRI G 2)
IRV e

n!(n+1)!
yields
2
W__a (m+12) 4 [C+3)
"7 4re @, (j0) n(n+1) | T (%)

The values of the denominator Legendre functions are given by [E-2|

%60 __,ra+p]’
Q.60 ~ | T(ER)

5!

() ’
= =27 [————2 (nH)/Z} , n odd

Thus

_ g n+1/20(@1+3)
T meon(n+1) L&) 7
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E.3 Potential in Aperture

The potential in the aperture is

$=Y_ AnPn(£)Qn (j0)

n,odd

where

(n+1/2)
AnQn (50) = 27r€0 Iregn(ntl)

Using
2n+1 1 1

n(n+1) BCRETS
we can write

AnQ@n (j0) = QF+1}

dweg |0 n+1
Using the identities [E-1]

i %—Pn (cos§) = —In[sin (6/2) {sin (6/2) + 1}]

n=1

o0

,; ;%Pn (cosf) =1In|1 + csc (6/2))]
we find
sin (8/2) {sin (8/2) + 1}
;m;d 7 Fn (cos) = l:sin (7/2 - 6/2) {sin (/2 — 6/2) + 1}]
i 1 1+csc(6/2)
n%;den (cos 8) = -2—ln [1 apey oy 9/2)]
Therefore we find
1 1 1+ cos8
n%;d [—7; + s 1} P, (cos8) = In|cot (8/2)| = In prmr

Using cosf = £

S el 1+¢
= 4meg n%d [n+n+1} Fal0) = 47r601n<,/1_§§>

or
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at /a2 - p?
$ (p, £0) = 47550 1n< £ )

P

where we have used £ = /1 — p2/a?. The actual potential in the aperture problem for z = —0 is the
negative of this result ¢ — —¢ and thus

¢<p,0>=4qom<“+v;‘j2“”2> | (1)

TE

Note that as p — 0 we have

¢<p,0>~—q~1n(@)

4dmeg p

E.4 Local Geometry at Wire End

Now we must consider how a finite potential is obtained as p — 0 when more realistic local geometry is
taken into account. The nonzero wire radius b could be taken into account, along with the geometry of the
wire end (rounded or flat), or we can take into account the fact that the aperture has a dielectric window
of some thickness A. Either approach involves evaluation of the potential a small distance from the end of
the line charge. Using the above positive semi-infinite line charge potential representation, we can write in
the vicinity of the line source end

¢~ 47:—]5 [arcsinh {(R ~ z) /p} + arcsinh (z/p) + constant)
0

We take the constant to be —2In R + In (2a) and thus write

¢~ 4:&-0 [ln (R—z+\/p2+(R—z)2) +ln(z+ p2+z2) —21np—2lnR+ln(2a)]

2 / 2 _
r~ q In p*/ (2a) ___9 In P2 +z z (B-2)
4reg 24 /p2+ 22 4meg 2a

This potential now agrees with the preceding form in the aperture plane z = 0 as ¢ = ¢In (2a/p) / (47ep).
Alternatively for p = 0 we have ¢ =~ gln(—a/z) / (47ep).

Thus for p=band z=0

~-1
bu N o In (2a/b) (E-3)

Suppose the average breakdown strength

Ey =~ 10kV/em (E-4)
for a rod-to-plane gap is used to set the charge level ¢ (this is taken from Figure 1 for a spacing of 5 cm — a
typical aperture radius); the charge is reduced when the field exceeds this level as a result of breakdown.
The average field in the gap between the tip of the surface of the wire and the hole edge is

79



E field when breakdown occurs between two needle points
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(B)= 72 [ Eo(p.0)dp=6u/ (a=t) = dufam Fo1n(20/t)

dmega
since ¢ = 0 on the conducting plane. If this is set to the average breakdown field

4mega
~ Ep———— E-
9% Bor 50 /b) (E-5)
Let us now take z = ~A and p=0
q
~— A
b0~ g=-In(a/A) (E-6)

as the maximum voltage inside the enclosure. Note that these calculations have not included the effect of
the dielectric layer with electric permittivity €. The effect of this layer is to slightly increase the values of b
and A. Because of the appearance in the logarithm we do not expect it to be a large effect.

E.5 Dipole Moment

The Legendre functions behave as

Qn (G0) ~ g (00
n N~ 6
(3). @0
Therefore the n = 1 term is dominant far from the aperture. Using
__ 3%
A= 8reg

Thus the potential far from the aperture (here we have introduced the minus sign ¢ — —¢ appropriate in
the lower half space) is

6 ~ —ALPL () Q1 (1) = —2£Q1 (50)

8meg
The Legendre function is

@1 (5¢) = Carceot ¢ — 1
where 7/2 > arccot { > 0 for 0 < { < co. Thus the n =1 term is

3
¢~ g€ (Carccot{ — 1) (B-7)
0
Note that on the negative 2 axis (where a maximum magnitude of potential occurs) £ = —1.
Expanding for large ¢
g ¢
¢ 8meo ¢2

Now using z = af¢ and r ~ a( as { — co gives
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2ga%?/2  p-r

o~ " dwegr3 = 47-reofr3
where the dipole moment is
1 2
p=-390€; (E-8)

E.6 Potential at Various Locations

The potential values at various distances from the aperture plane are now discussed.

d==> AnPn(§)Qn (i) (E-9)
n,odd
where again the minus sign has been introduced in the lower half space. Now on the negative z axis £ = —1

and we let { = ¢,

= AnQn (o)

n,odd

g ,n+1/2 (%)(n+l)/2jn+1

An = dmep n(n+1) (Zx1)!

E.7 Fit Function

Note that as {; — 0 we expect with z = —a(, that (4meo/q) ¢ ~ —In(y, (o — 0. The actual
value approaches (4meo/q) ¢ ~ In(a/A), {y = 0. The large (o limit from the dipole moment is
(4meo/q) p ~ 1/ (2@%) , o — o0. Thus as a fit function we try

1 1+¢3 )
4me =ln|———2— E-10

(4meo/q) ¢ 2 <Cg+:2/02 ( )
Figure 2 shows a comparison of the series solution and the fit function.
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Figure 2. Plot of Various Potential Approximations When Wire Touches Aperture Center
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Appendix F. Legendre Functions of Imaginary Argument

We use the expansion [F-1] to evaluate the Legendre function of imaginary argument

' —
Qr (5¢) = 2" (-1)™ Ln%ﬂ (G + 1) iyl (% +m,n+m+lin+ g9 ‘%)
5)11, u
=3 2m+1 (__1)m (m:_ n)‘ (42 + l)m/zj—n—lu—n-m—l Z (2 + m)k (Z_*_ 1]:2" + )k (_l)k u—2k
(2). k=0 (n+3), 4!

u=(+1/¢3+1,0< (<0

where F (a,b; ¢; 2) is the standard hypergeometric function.
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